k-Plane Clustering

نویسنده

  • Panos Pardalos
چکیده

A nite new algorithm is proposed for clustering m given points in n-dimensional real space into k clusters by generating k planes that constitute a local solution to the nonconvex problem of minimizing the sum of squares of the 2-norm distances between each point and a nearest plane. The key to the algorithm lies in a formulation that generates a plane in n-dimensional space that minimizes the sum of the squares of the 2-norm distances to each of m 1 given points in the space. The plane is generated by an eigenvector corresponding to a smallest eigenvalue of an nn simple matrix derived from the m 1 points. The algorithm was tested on the publicly available Wisconsin Breast Prognosis Cancer database to generate well separated patient survival curves. In contrast, the k-mean algorithm did not generate such well-separated survival curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The hardness of k-means clustering in the plane

We show that k-means clustering is an NP-hard optimization problem, even for instances in the plane. Specifically, the hardness holds for k = Θ(n ), for any > 0, where n is the number of points in the instance, and k is the number of clusters.

متن کامل

FOCAL POINT AND FOCAL K-PLANE

This paper deals with the basic notions of k-tautimmersions . These notions come from two special cases; that is, tight and taut immersions. Tight and taut based on high and distance functions respectively and their basic notions are normal bundle, endpoint map, focal point, critical normal. We generalize hight and distance functions to cylindrical function and define basic notions of k-taut ...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999